AD-A122 827 AR HULTIPROCESS NETWORK LOGIC WITH TEMPORAL RND SPRTIRL 11
MOER| ITIES REVISED(U) HARYARD UNIY CRAMBRIDGE MA AIKEN
COMPUTAT LAB J H REIF ET AL. OCT 82 TR-29-82-REY

UNCLRSSIFIED NO8814- 80 C 8674 F/G 1271 NL

L1 L ALY AR Ao w A ARSI e P

L2 L IR Ui L iaetdin® R 4.0 A -
0 S JP e ur LA din®,J S! ofa i PO Rl .
—-—— B —_——— e e B Ve

o

2 it s

FeEEEERE

FEEE
EEFE

e
li=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o

e

ty

3

ing Technology

Comput

Harvard Univers
Center for Research

R R S S e

T L
LA el menh et iede. bRt e Y
Fe = Ca e Btvas R e a il I 8] ~ s St b Ui AL MY Ay N -

- Sl e
| AR ARSI

A MULTIPROCESS NETWORK LOGIC WITH
TEMPORAL AND SPATIAL MODALITIES

= John H. Reif

A. P. Sistla

l».‘ TR-29-82

e e e e e e e
by SNVEENIAAINA M e ML

v
-
LAY

R IR I SRR
Sia'd '_‘;LA‘_Li f RO IPRRR

-
'

PR IR

August 1982 orie

Ccopry

Revised October 1982 INSPECTED

W
-l S e
o

:

e

A MULTIPROCESS NETWORK LOGIC WITH
TEMPORAL AND SPATIAL MCDALITIES*

John Reif
Aravinda Prasad Sistla

Aiken Computation Laboratory

Harvar@ University
Cambridge, MA 02138

Summag

We introduce a modal logic which can be used to formally reason about
synchronous fixed connection multiprocess networks such as of VLSI. Our logic
has both temporal and spatial modal cperators. The various temporal modal
operators allow us to relate properties of the current state of a given
process with properties of succeeding states of the given process. Also, the
spatial modal operators ;llow us to relate properties of the current state of
a given process with properties of the current state of neighboring processes.
Many interesting properties for multiprocessor networks can be elegantly
expressed in our logic. We give examples of the diverse applicaticns of our

logic to packet routing firing squad problems, and systolic algorithms.

We show that deciding validity of a formula in our logic is not decidable.

However, we show that deciding validity of a proportional formula in our logic

with respect to a given finite network is PSPACE-complete. We also investigate

the decidability issues of different versions of this logic.

*This work was supported by the National Scierce Foundation Grants NSF MCS79-21024

and NSF MCS79-08365 and the Office of Naval Research Contract N0O0014-805-0674.

K
K
o
L
1

Ry LAl

) PSP

o

A

PTS S Y94 WPEENIR W WENPILWLERNN

PIRE S5 TR

atasan il R

ko e

dead

ADA122827

(g
td

oo

¥

SECURITY CLASSIFICATION OF THIS PAGE (When Date Pntered)

l|'. REPORT NUMBER

REPORT DOCUAMENTATION PAGE

READ INSTRUCTIONS
NREFORE COMPLETING FORM

2. BOVY ACCESSION NO,

4

Y. AUTHOR(s)

3. RECIPIENT'S CATALOG NUMIER

TITLE (and Subtiile)

A Multiprocess Network Logic with Temporal and
Spatial Modalities

S. TYPE OF REPORT & PEMOD COVERZD

Technical Report

6. PERFORMING ORG. REPORT NUMBER
TR-29-82

John H. Reif
Aravinda Prasad Sistla

§. CONTRACY ON GNANY NUMBER(®) |

NO0014-80-C-0674

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
)) AREA & WORK UNIT NUMBERS
Harvard University
Cambridge, MA 02138
V1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Navel Research October, 1982
800 North Quincy Street 13. NUMBER OF PAGES
Arlington, VA 22217 18
T4. MONITOMING AGENCY NAME & ADORESS 1 different (rom Controlling Oltice) 18. SECURITY CLASS. (of thie roport)
same as above
$e. OECLASSIFICATION/ DOWNGA
oFcLASSIE N/COWNGRADING
16. DISTRIBUTION STATCMENT (of thie Report)
unlimited
Approved for public miease;
Distribution Unlimited
17. DISTRIBUTION STATEMENT (of the adstrect ontered in Bleck 20, ‘Repeort)
umlimited
16. SUPPLEMENTARY NOTES
19. REY WORDS (Continue on coverse side i necessery and identily by blesk number)
modal logic, multiprocess networks, temporal modalities, spatial modalities
20. ABSTRACT (Continue on reveres side If necosssry and identify by dleck numbes)

see reverse side

DD ,%oN's 1473

EDITION OF 1 NOV 65 18 OUSOLETE
€/N 0102-014- 6000 |

SECURITY CLASSIFICATION OF THIS SAGE ("hen Dete Rnterey)

1 LoataTel
PRI T

Loal

L
.
s
A
P

-

al
.-
RS

———

ey Ao it Snti it oV AR bl I R R e T T e e "- e
o vl oy St e e St - e et el T Dt ~ - ¥ ro—— e [MR A Yt S

-

<uLUMITY CLASSIFICATION OF THIS PAGE'When Date Entered)

Summary

“We introduce a modal logic which can be used to formally reason about
synchronous fixed connection multiprocess networks such as of VLSI. Our logic
has both temporal and spatial modal operators. The various temporal modal
operators allow us to relate properties of the current state of a given
process with properties of succeeding states of the given process. Also, the
spatial modal operators allow us to relate properties of the current state of
a given process with properties of the current state of neighboring processes.
Many interesting properties for multiprocessor networks can be elegantly
expressed in our logic. We give examples of the diverse applications of our
logic to packet routing firing squad problems, and systolic algorithms.

]
We show that deciding validity of a formula in our logic is notégggidable.

ever, we s W’Mf a proportional formula in our logic

" b:)lnnluu mm'- i

e e’

Q; ¢ ;:;w h, ct a ‘poln #idue w%’ue PACE-complete. We also investigate
4

T ftutinad

4\thv/gpc1dablllty issues of d1ffchnt versions of this leoqgic.

o(’

A | o
P

SECURITY CLAST: FICATION OF THWIS PAGE(#hen Dats Entsred)

LR S VI

-

), W PR TYAE ST PU I

l"
i

t

k-.
)"
-
-
-
-
..
-
b,
-

T

P e

RARRES B LULEnER AN SR BB

RS P L SL AN RN

DR S LAt

Cha et e B ane. dniet- e e S~ LR Ny TR TN

1. Introduction. One of the fundamental models of parallel computation is a

collection of synchronous processors with fixed inter-connections. For example,
the iterative linearly connected, mesh connected, and multidimensional arrays
of [Ko62] and [Co69], the shuffle exchange networks of [St71] and ultracom,uater
of [Sc80], and the cube connected cycles networks of [PV79].

Parallel algorithms for such networks are difficult to formerly describe
and prove correct. For example, the systolic algorithms of {KL80) are not
formally proved correct in this paper; instead they present informal "picture
proofs."” |

An informal description of a program or algorithm for a fixed connection net-
work would likely make reference to tﬁe spatial relationships between neighboring
processes and properties holding for all processes, as well as the transformaticns
over time. Indeed, natural-English allows expriéssion of spatial mcdzl cporators
such as "everywhere", "somewhere", "across such and such connection", as well as
temporal modal operators such as "until"”, "eventually", "hereafter"”, and "next-
time". However, natural English cannot suffice for formal semantics. This paper
proposes a formal logic allowing use of these modal operators in the context of a
fixed connection network. Section 2 defines our logic's syntax and semantics.

Previous program logics contained only temporal modal operations [Pn77],
[MP81] or modal operations for the effect of program statements [FL79]). Temporal
logic has been used to reason about parallel programs; however it is impractical

to use this logic to reasoh about large number of processes operating synchronously

and communicating through fixed connections. Our use of spatial as well as

temporal modal operators is a new idea. (Note: our spatial modal operators
differ in an essential way from the model operators of dynamic logic; see
Section 2.3). This combination of temporal and spatial modal operators allow us

to formally reason about computations on networks with complex connections.

Qo e

‘
e lalaal e

alaae.a Mealt *

e

1 f
PR

£ .

PRATNA A M fron Mt apoay v

-2-

L f
T UG '
Al b de

The contributiocn of this paper is more than simply the definition of our net-
work; we also describe applications and investicate its computational ﬁ
complexity of its decision p;oblems.

Section 3 describes some interesting applications of our logic to routing j

on the shuffle exchange network, to the firing squad problem on a linear array, F

and to stystolic computations on arrays. We felt these examples to multiprocess 1

o 2m £ s 4
L4 i~y

. networks illustrate the general applicability.

Section 4 investigates the problem of fasting validity of formulae of our ﬂ

logic. We show the set of valid formulas are ni-complete. However, in practice

g
28
®
£'5" s

Lt g

sl 2 5 X+

we are generally only interested in deciding validity of a proportional formula ﬁ
with respect to a given finite network. We show this problem is PSPACE-complete.
Also, we show in the full paper that it is decidable to test validity of

proportional formulae with restricied modaliiies (for example formulae with 2l

temporal operators, but only the "somewhere" spatial operator, and also formulae
with all spatial operators, but only the “eventually"” temporal operator).

We conclude in Section 5 with a summary of our results.

2. Definition of Our Logic. We begin by describing our logic for linear time.

The end of this section briefly sketches how this logic can be extended to first R

order formulae, and to branching time.

2.1. Networks. Iet L be a countable set of symbols, which we call links.

o A network G = (P,E) contains a countable set of processes P and a partial

mapping E: L X P =+ P. For each process p € P and label £ € L, E(2,p) is
(if defined) the process cocnnected to p by link L. For example, a square
6 grid network might have links up, down, lef't, and right. The links are different

from atomic programs of PDL due to the restrictions given in the next page. j

ks Jhtie s SRt s e Shtet Eha e Jie S et T Bies SAVint S St e UNASCEECEMN SIS S e S T A P e Ay o e e o TR T TS I ETETE . 1

.
£

LYY

2.2. Syntax of the Logic. We distinguish as temporal modal operators the symbols

eventually, hereafter, until, and nexttime. The spatial modal operators are

somewhere, everywhere, and any symbol in the set of links L, which we assume

contains none of the previously mentioned modal operators.

Let go be an infinite set of atomic formulae. let the set of formulae

.o - B R
. . -I M IO
A LA_ O S S . e aa a

& be the minimal set of strings containing 3’0 and such that if fl' f2 €&F then

fl A fz € F
1f1 € F TJ
eventually £, € F

hereafter £, € F

fl wuntil fz €EF "j
nexttime fl € F
somewhere f1 € F
everyvhere f, € &F 3

9.f1€9'foreachlink2€1.

2.3. Semantics of Our Logic. Let a model . be a S-tuple (S, ¥, A, G, 7) where:

=

(1) S is the set of states,

(i) v: s » 2%, ' j:f
(iii) A: (L U {nexttime}) x S » S, is a partial function .3
(iv) G = (P,E) is a network, and 1

(v) w: S > P.

'

Thus for each state s € S, Y(s) is the set of atomic formulas which hold "“

at s, and w(s) F:ls the process associated with state s. Also, A(nexttime, s)
is the state occurring in the time instance just after state s, and A(L,s) is the '
current state of the process connected to process n(s) by link £. 3
We extend A as a partial mapping to the domain (L U {nexttime})* x § so that 1

for a1l s € s Alegs) =8, and AR, ° 22, 8) is defined iff 4(2,,s) and .i

|

. . - ERE T A TR S S - e . w . LA -t e T, - . - B .
W SB TIT S VO TO \ S S S S LI U2 I AP UL SPLIPL. A WP L WOUT T N, Dy TP Ny R W T

B UL U G T

ML IR Wi ARG R it e 4 O i e An shvasSae —He St PR S T T T T e e T

-4

A(zz, A(ll,s)) are defined and in this case A(21°22,s) = A(lz, A(ll,s)).
Similarly we also extend E as a partial mapping to the domain L* x P.
A model . is proper iff

For each link £ € L and each state s € S, A(R °nexttime,s) = A(nexttime o £, s)

Rl:
(thus nexttime commutes with respect to each link; this presumes the processes
are synchronous).

R2: For each state s € S, A(nexttime,s) is defined and m(s) = w(A(nexttime, s))
{(thus the name of each process is invariant over time).

R3: For each state s € S and link £ € L, E(&, 7w(s)) is defined iff
A(L, s) is defined and in this case, E(2, n(s)) = w(A(L, s))
(thus processes associated with states are connected by tha same links as
in the network G)

R4: For any &,0° € 1* and states s,s'€ s if E(@,7(s)), E{a',m(s')) are
dcfined and Fla,w(s)) = F(a',7(s')) then A(a,s) = A(a',s’).
(thus the relationship between the states of two processes is independent of
the particular paths of links over which they are connected.)

B5: If w(s,) = mi{s,) then for some i 20 A(nexttimei, s)) = s, or

. i
A(nexttime™, sz) = sl.

Hereafter, we consider only proper models.

Let us fix the model . We define truth of a formulae at a given state

s € S by structural induction.

For each atomic formula F € 4, sk F iff F € ¥(s). For any formulas
£ 5, € &
@
- s"fll\fz iff sk £, and sk f,
Sb1f1 iff szl
L s k nexttime fl iff A(nexttime, s) k f1
» A
T 8 k eventually f1 iff 3k =20 A(ne:cttimek, s) k fl
- s k hereafter £, iff Wk 20, Atnexttime®, s) k £,
.
TR

s SRR

g1 S

s

NS RN

M |

FEPRPLPUERr T b oo s e

S N

sk £ until £, iff I 20 A(nexttime®, s) k £

and

2
Vi, 0 < i < k, Atnexttimet, s) k £

s k !fl iff A(%,s) is defined and A(&,s) E f1
s k somewhere £, iff 3a € L*, such that A(a,s) is defined and Ala,s) k £
s k everyuwhere £, iff Va € ' (A(a,s) is defined = A(a,s) k £)

We let EA? denote truth with respect to a given model ..

2.4. Decision Problems. Formula f € & is satisfiable (valid) if s F ouf

for some (all, respectively) model and state s. Given a network G,
formula f € &F is G-satisfiable (G-valid) if s F.A?f for some (all,respectively)

models A and state s with given network G.

2.5. Extensions to a First Order Logic. The first order version of this logic

consiste of the additional symbols like local variables, global variables, constant

symbols, function.and relation sysbols, and the universal quantifier ¥. A term
is defined as in the case of first order predicate calculus. An atomic formula
is an atomic proposition or of the form R tltz...tk where R is k-any relation
symbol (R can be equality in which case k = 2). The additional requirement
for the set of formulae is that if f is a formula and x is a global variable

so is Vx(f). A model 4 is a S5-tuple (£, S, A, G, 7) where I = (D, a,B) in

which D is a countable domain in which the variables take values, a interprets

relatiorn and function symbols, B is a mapping associating with each global variable

and constant symbol a value from the domain; § is the set of states where each
state is a mapping that associates a truth value with each atomic proposition and
a value from D with each local variable; A, G, ® are the same as in the
proéositional case. A proper model should satisfy the same conditions as for
propositional case, modified in a natural way. We consider only proper models.
Truth of an atomic formula in a state of a model is defined as in the case of

first order predicate calculus; and truth of a formula in a state of a model is

defined in ‘uctively as in the propositional version with the following addition;

A PP

f el .y .

S ¥

o
PR

AL e VA PR

R

SN B

Bt Jhady St

.
.
ot ey,

™

T Y,

o "
| M,s bk Vx f iff foreach c € D M ,s k f where#C is exactly same as .
b
- except that the glcobal variable x is given the value ¢ in ME. Satisfiablity
‘: and validity of formulae ar¢ defined as usual.

2.6 Extensions to a Branching Time logic. We can easily extend our logic to a

branching time logic, as in [BMP81].

3. Applications

This section gives some examples of the use of our logic to various multi-
process network applications.

3.1 Routing on a Shuffle-Exchange Network.

A Shuffle-Exchange network G = (P,E) where P‘= {0,1}n and :

E: {ornhmge, shuffle} x P = P

is defined as follows:

E(exchange, (an_l,an_z,...,ao)) = (a _,.a ,r-.-02))

E(shuffle, (a _ .8 ,s---135)) = (agsa _yr---03y)

for all an-l'

Intuitively, the exchange edge connects processes Py and P, if all the bits of

a _,i---eay € {0,1}.

Py and P, are the same excepting the least significant bits which are distinct.

S The shuffle edge connects two processes p, and Py if P, is obtained by one
Sl cyclic shift of bits in p,.
The routing problem in this network is to route a packet present at some process

to a given destination traversing only along the shuffle and exchange edges.

We capture the name of a process by the atomié propositions An-l'An-z""'AO'

The formula fo asserts that the name of a process is invariant over time;

.; £, = //\\ (hereafter A, V hereafter 1h;) ‘
0si<n

£ assert that exchange and shuffle edges are properly connected.

re-

T Y

.t
v AR,
4 PR

- oy

s e

G 0% uan Bt By due &
PRSI

R BRI
. Pt T,
W L T

= -— 7 -— hange 1A
fl = /\ (Ai exchange A;) A R, <—~exc cmg 13,
1€£i<n
£,= /\ & —shuffle A1y poq o)
0<£i<n

The presence of the packet at any process will be indicated by the atomic

reeesD. .. We assume that the name

proposition X, and the destination by Dn—l'Dn-2 o

of the destination travels with the message.
g.= XAN (A, Deverywhere (X2A.)) A (A, Deverywhere (XDqA.))
0 o<i<n 1 i i i

asserts that X is true at at most one place.

g =XAA (D, Dhereafter everywhere (x> D)) A
0<i<n
(WD, Dhereafter everywhere (X D-.Di))

asserts that the name of the destination process travels with the packet.

g, = XDnexttime (Xv (shuffle X) vexchange X)

asserts that the packet travels along shuffle or exchange edges only.
The main correctness property is g3 which asserts that the packet reaches

its destination eventually.

g, =XA A (a D)
3 o<ign-1 *

let r be a formula which describes the actual routing algorithm. Then
(hereafter everywhere (ra £o A fl AE,A Go A gl)) Deventually somewhere 93

is a valid formula iff the algorithm correctly routes packets.

Next we describe a specific routing algorithm for the shuffle exchange network
and derive the corresponding formula r for its semantics. The packet will be
routed in n stages, where for i=0,...,n-1, if at the start of the i-th stage
the packet is located at a process whose lowest order address bit is not the
value of Di' then the product traverses an exchange link. In either case, the

product next traverses a shuffle link and reaches the i+l stage.

i+ W

-8-

To define a formula r for this routing algoritnm, it is useful to introduce

proportional variables SO""'sn—l and require that only unique Si be true at
any processes, and that the S be invariant or traversing an exchange link but

that s(i+1)mod n be true on traversing a shuffle link. Thus we let

r,= V. (5,Al A 15.) A (nexttime exchange s;) A
o<i<n * 0<ikn

iy (nextime shuffle s)

(i+l)mod n
The formula for semantics of this routing algorithm is therefore:
), =, AX D V(S A((A;+D,) Dnexttime exchange (X))

10 0<i<n
A ({Aj+>D,) orexttime shujfle(X))) .

3.2 The Firing Squad Problem for a Linear Array. We briefly describe the problem

and show how its correctness can be specified by our logic. A solution to the
firing sguad problem consists of a linear array of deterministic finite state
processes as shown in figure 1. The next move of each process is a function ot 1its
present state and the states of its neighbors. All the privates are identical
processes. The problem is to obtain the program for the lieutenant, the sergeant
and the privates so that when even the lieutenant is in a designated initial state,
then eventually all the processes simultaneously enter a special state called

the firing state, and non of them enters this state before this time. The solution

should work for linear arrays of all sizes.

right right right right
- left left left left
! Figure 1

We assume that all processes have states sets ¢ = {0,1,2,...,m}, and

3‘ the state 0 is the initial state of each process. State 1 is the specific
;é state into which the lieutenant enters to start the operation, state m is the
}' firing state. All the privates are identical. We use atomic propositions

::> Po, Pl""'pm to indicate the state of an process (Pi is true at a place iff
e

the corresponding process is in a state i at that instance). Now we assert the

Srendimaadh PRSP ELP Wy SO - NS T [V RN S A S - 1.

Ui
r
|

)

e A

S |

PR P ————— T . e Pl e A A e) LM B e It B S el i S aC R MRS St At

- the operation of the system as follows.

(i) 'I' "asserts that each Process js in at most one state at any instant of

time.
I = everywhere hereafter |[/\ (p, 1Pj)]
0<i,i<k ;
i¥3
(ii) fo asserts that the moves of lieutenant is according to its 'next move

partial function 60: 92 - Q.

[P T Ty

£, = everywherelrleft(true) o ((Py v P A

hereafter /\ ((Pi A right Pj) D nexttime p

[N)] i
1,]]

60(113

Note that 1left(true) is true only on the lieutenant, the left most

processor.

1’ f2 be the formulae that define the moves of all privates

(iii) Similarly let f
and the sergeant respectively. The positions of privates is identified by
the truth of the formula

(left(true) A right(true)).

Note that the position of the sergeant is identified by the formula

1rtght (True).

(iv) Let 9 be the formula that asserts that if any process (other than the
lieutenant) and all its neighbors are in state O then it remains in state

0 in the next step. It is easily seen that this can also be asserted.

2 T RTINS L ST

Now we assert that if all the above conditions are met and at any time the

::} lieutenant enters the state 1 then all process will eventually enter the firing

state simultaneously at some future instance, and none of them will be in the

oo

AN e

firing state before that instance. This is captured by the formula g.

" g= (I A fo nESA go) D hereafter [somewhere(1left(true) A Pl))

1l
((raomevhere P) until (everywhere P 1))

Tyrrrvy
PR |

RO St I S

———
e

T T A L s

‘rvv -

'

TP Ty

A
I f
\‘[w:mﬁA‘.n

A DNt T
AN St s
PG . Lo .

]

o

P

. . - . - »
R R - . :
nadigntnnd X - - . . N
BN S SO w SR SR ST AN O N e . -

I A st e o pT—_— e

«10-

g 1is valid on all models with linear arrays as networks iff the given
solution to the firing squad problem is correct. A similar construction can be

given for the firing squad problem over any given network.

3.3 Systolic Arithmetic Computations. The systolic algorithms of [KL80] are not

formally proved correct in their paper; instead they present informal “picture

proofs". Our logic is thus particularly useful here when extended to first order

formulae (as described in Section 2.5).

We consider an interesting example of a network for matrix-vector multiplica-
tion due to [KL80). The matrix is an infinite band matrix of bandwidth (n+l).

The network architecture is shown in figure 2.

Figure 2

The main processors are PO' Pl,...,Pn. The processors Pé, Pi,..., Pa
are the input processors, each of them contains a variable 2. The values of Z
in Pi change with time and they represent the values of the ith diagonal of
the matrix. Each processor Pi has two variables X, Y. The values of the
variable X in PO over time represent the input vector. The values of X
move right with each time instance.

Thus

9, = left(true) oVa(left (X =a) +>nexttime (X =a))

asserts that the value of X at the nexttime instance in a process Pi(i.>0),

is the pregent value of X in the process left to Pi'

WL T IR R R

W 5 WL

e

Chdes

MY W VW W R)

- - .. -

ad T T YT
Rt B g Lt S gt Mgt S Sal Shait NRamt gl Juadh Mt g el - ey T - i

-11- ;

At each step Pi(i'<n) computes its value of Y to be the sum of the

previous value of Y in process +» Plus the product of X in Pi times 2

P,
i+l

S RRPNSI eIV

in Pi. This is captured by

g9, = right(true) DVaVB (right (Y = a) Anexttime input(z = B)

Snexttime(Y =a + X*B))

At each step Pn computes its value of Y to be the product of the value of

X in Pn and the value of 2 in Pé. This can also be easily asserted by formula é
g3 = right(falsc) A input(true) DVaVB(X = a A input (Z = B)) Dnexttime (¥ = a*8)). A

4

(note that right(false) A inmput(true) holds only for process Pn) 3

The correctness property at Pn can thus be expressed in our logic as

hereafter everywhere (g, Ag, A g3) Dhereafter h ‘ }
.
where -
h = left(false) Ainput(true) D VJ
n , i n+i 2n h L8
Yag.-.a VB ...8 (A nexttim: (X=0,) Anexttime ~(Z2=8.)) onexttime (Y =) a.- B.) . -
n O n . 1 i L= i i 3
i=0 i=0 2
]

4. Decidability and Complexity Issues. In this section we consider issues
=4
of decidability and complexity of different versions of our logic. Recall that a f
formula is said to be satisfiable iff there exists a model and a state at which ?%
the formula is true. A formula is said to be valid if it is true in..all states of A
=
all models. We say that a formula is satisfiable (valid) on finite networks if]
the formula is true in a (all) model with finite networks. ;:
it
= ' THEOREM 1. The set of satisfiable formulae of multiprocessor network logic I
= AR
t* » o - - .
- is ti-complete and the set of valid formulae is ni-camplete.
- -
- X
*‘ Proof sketch: First we show that the set of satisfiable formulae is a X
- =1
:} z;-complete set. From this result it can easily be shown that the set of valid -

:; formulae is ni-complete.

:',’Td—_",,'".' [

Oun 2 o T YTy T

, A P 0
L T P WP

. c e T Do e

L ot AR AP

[araaraay

L A

We consider a deterministic Turing machine M on infinite strings. M has
one read only infinite input tape, ard an infinite work tape. An infinite string
is input to M on its input tape. M never halts. M is said to accept an input
if during its computation it goes into any of a set of final states infinitely
often. The set of encodings of all Turing machines that accept at least one input,
is shown to be i—complete in [scrG82]. We reduce this set to the set of satis-
fiable formulae. An ID of M is the part of input is seen thus far, the contents
of the work tape, the position of the héad on the work tape. We define a sequence
of IDs of M Gduring its computation on an input and express this sequence using

a formula in the logic. We also assert that in this sequence final IDs (IDs having

a final state) appear infinitely often. Thus given an encoding of a Turing machine

we obtain a formula that is satisfiable iff the Turing machine accepts at least

one input. The details will be given in the full paper. o

Let M= (S, ¥, A, G, 7) be a model where G = (P,E) is a finite network.

let ¢: P+ S. ¢ is said to be consistent with A, if w(¢(p)) = p for all

p € P, and for all Py pj if pj = E(R, pi) for some £ € L, then

¢(Pj) = A(L, ¢(pi))- Let & = {6 | ¢ is consistent with A}, and let

riext: &-»P be such that for all ¢ € & and for all p next(¢)(p) =
A(nexttime, ¢(p)). M is said to be ultimately periodic with starting index 2

and period m, if for all ¢ € & nexti(ﬂ = rzexti+m(¢) for all i 2 8. For

any formula £, let SF(f) be the set of subformulae of f, and for any ¢ € & , let

2SF(f)

[¢): P such that (¢]l(p) = {g | g € SF(f) and ¢(p) F g}. We require

a technical lemma characterizing satisfiability.

LEMMA 1. f e satiefaible in a model over a fintte netwovk iff £ 1is

satigfiable over an ultimately periodic model over a finite network. o

SRS

ARis 8 n um s

A__mS . a.%

e e 1

A

LA 004 0 e aa . 4
o

T

e Y
BB

-

{

a0 S b JRctn Brun Rine - g) ! i bl PR =

-13-

THEOREM 2. The set of formulae that are satisfiable in a model over a finite
network tie zg-complete, and the set of valid formulae in models over finite net-

works is ng-comp lete.

Proof: As in the previous theorem, we can reduce the halting problem of
Turing machines over finite strings to the set of satisfiable formulae in a model
over a finite network. We give a Turing machine M which accepts the above set.

M guesses a finite network and an ultimately periodic model over this network.
It next verifies that f 1is satisfiable in this model. M halts only on the input

formulae that are satisfiable in a model over a finite network. (o]

THEOREM 3. The following problem ig PSPACE-complete. Given a finite network

G, and a formula £, is8 £ satisfiable in a model over the network G?

Proof: The PSPACE-hardness of the problem follows from the PSPACE-hardness of

satisfiablility for linear time temporal lecgic [SC82]. We give a polynomial

space bounded Turing machine M that checks if f is satisfiable in a model

over the network G. M guesses [¢)], and verifies for consistency and that

f € [¢)(p) for some p € P. At each subsequent instance M guesses [next(¢)]

and checks that it is consistent with [4) . It continues this each time keeping
[¢) and [nextl(¢). At a certain instance it guesses the beginning of the period
and saves the corresponding [¢]. It continues the previous process, each time

guessing either [next(¢)] or guessing that it is the end of the periodic part.

In the latter case it takes [next(¢)] to be the saved value at the beginning of the

period. Each time M guesses [next(¢)] it verifies that [¢] is consistent

T YT, W Tw W @, e w w w v w w vl =, == =, ==

S ST R

RIR . IPRRR
ket

b A

A
'y

ke

diba ik

PSTR ST S

Q
PAPEPY T

!

PP P W

'
i

P I e A
TR A

DAL o g AL AN AL JCh sk e L ary g oo o e ———
R : - L :]‘ . NP Can e et
RN o AP T S A oA e

-14-

with [next(¢$)). M also verifies that certain formulae are fulfilled in the
periodic part. M clearly uses space polynomial in the size of G and the size

of f£. Further, we can show: o

THEOREM 4. The set of valid formulae of first order multiprocessor network

logic over models on finite networks is ni-complete. o

S. Conclusions. We have proposed a logic to reason about computations of multi-
processor networks. We feel that our logic will be useful to specify the semantics
and prove correctness of multiprocess networks. No such formal system for multi-
processor networks had been proposed rreviously. We have examined the application
of our logic to some diverse multiprocess network problems, aud presented some

results in decidability and complexity of our logic.

A I A A e i O AL St APt APOIE st Sawie Suen S e e Shtee sote e o T g . T TN T T T Y T R T T Tt Tw e ———=

TR

i Y

- e e g -
eheniios &nnd il gd A-i AR

<

- - .
L,

-,

L opgien 200 ang Mt lis B Na e ea g ah arae Jin - ANa iR T L . T

-15-

Bibliography

(BMPS1]

[ces1]

[co69]

[FL79)

[cpss])

[HR81]

[mMP81]

[x069]

[(Pn77]

{pv79]

[sc80]

[scFrGse2]

[scs2]

[st71]

M. Ben-ari, 2. Manna, A. Pnueli, "The temporal logic of branching time"
8th ACM Symposium on Principles of Programming Languages, Williamsburg,
VA, 1981.

E. M. Clarke, A. Emerson, "Design and synthesis of programming
skeletons using branching time temporal logic", IBM Conference of
Logics of Programs, May 1981.

S. N. Cole, "Real time computations by n-dimensional iterative arrays
of finite state machines, IEEE Trans. on Computers, 18 (1969)
PP. 349-365.

M. Fischer, R. Ladner, "Propositional dynamic logic of regular programs",

JCSs, 18(2), 1979.

D. Gabbay, A. Pnueli, S. Shealah, J. Stavi, "Temporal analysis of
fairness™, 7th ACM Symposium on Principles of Programming Languages,
Las Vegas, NV.

J. Y. Halpern, J. H. Reif, "The propositional dynamic logic of deter-
ministic, well-structured programs”, 22nd Symposium on Foundations of
Computer Science, Nashville, TN, 1981.

Z. Manna, A. Pnueli, "Verification of concurrent programs", The
Correctness Problem in Computer Science, Academic Press, London, 1981.

S. R. Kosaraju, "Computations on iterative automata", Ph.D. Thesis,
University of Pennsylvania, PA, 1969.

A. Pnueli, "The temporal logic of programs®, Proceedings of 18th
Symposium on Foundations of Computer Science, Providence, RI, Nov. 1977.

F. P. Preparata, J. Vuillemin, “The cube connected cycles: a versatile
network for parallel computation", FOCS 1979, pp. 140-147.

J. T. Schwartz, "Ultracomputers", ACM Trans. on Programming Languages
and Systems, Vol. 12, No. 4, Oct. 1980, pp. 484-521.

A. P, Sistla, E. M. Clarke, N. Francez, Y. Gurevich, "Are message
buffers characterizable in linear temporal logic?", Proceedings of the
Symposium on Principles of Distributed Computing, Ottawa, Canada,
August 1982.

A. P. Sistla, E. M. Clarke, "The complexity of propositional linear

temporal logics", ACM Symposium on Theory of Computing 1982, pp. 159-167.

H. S§. Stone, "Parallel processing with the perfect shuffle", IEEE Trans.
on Corputers, Vol. C-20, No. 2, Feb. 1971, pp. 153-161.

PG W N NP P Y SR =

A |

o R

'
[

-

)

I i N - \3

\ .

. ' '
I\I .

R

b

FILMED
2-83

.
"
¢ I
. * LI .

